PHENIX measurements of low momentum direct photons from large ion collisions as a function of beam energy and system size Deepali Sharma for the PHENIX Collaboration SUNY, Stony Brook February 7th, 2017 ## Direct Photon Sources in Heavy Ion Collisions #### Direct photons are a unique probe - Color blind - Probe the full time evolution #### Production of photons: Quark latte Deepali 1 10 10⁷ log t (fm/c) #### Direct Photon Puzzle large yield and large v_2 in $\mathrm{Au} + \mathrm{Au}$ - ▶ Large yield → early emission - ▶ Large v_2 → late emission #### **Direct Photon Puzzle** large yield and large v_2 in Au+Au - $\blacktriangleright \ \, \text{Large yield} \rightarrow \text{early emission}$ - ▶ Large $v_2 \rightarrow$ late emission Challenging to describe large yield and large anisotropy simultaneously #### Experimentalist can provide - measurement of different observables: - Yields - ► *V*₂, *V*₃, - Collision energy dependence:200 GeV, 62 GeV, 39 GeV - Large systems (hot medium): - Au+Au, Cu+Cu, Cu+Au - ► Small systems (cold ??): p+p, p+Au, d+ Au, ³He+Au New results shown in this talk #### Photon Measurement Techniques in PHENIX # Three independent methods at PHENIX - Measuring energy deposited by photons in Calorimeter - ▶ Good resolution at high p_T - Low pt contaminated by hadrons - ► Internal photon conversions - Measure virtual photons - Reduction in background from π⁰ Dalitz decays by a factor of 5 - Low p_T reach is limited (~ 1 GeV) as well as high p_T - External photon conversions - Measure real photons - ► Extends to p_T << 1 GeV, little hadron contamination - ightharpoonup High p_T reach is limited ### Photon Measurement Techniques in PHENIX # Three independent methods at PHENIX - Measuring energy deposited by photons in Calorimeter - ► Good resolution at high p_T - ► Low pt contaminated by hadrons - ► Internal photon conversions - Measure virtual photons - Reduction in background from π⁰ Dalitz decays by a factor of 5 - Low p_T reach is limited (~ 1 GeV) as well as high p_T - External photon conversions - Measure real photons - ► Extends to p_T << 1 GeV, little hadron contamination - ► High p_T reach is limited 3 independent measurements in good agreement with each other #### Direct Photon in Au+Au at $\sqrt{s_{NN}}$ = 62.4 GeV #### **External Conversion Technique** - Conversions reconstructed at detector material (HBD back plane) - $ightharpoonup R_{\gamma} = N_{\gamma}^{incl}/N_{\gamma}^{hadron}$ Clear direct photon signal in Au+Au at 62.4 GeV ## Direct Photon in Au+Au at $\sqrt{s_{NN}}$ = 62.4 GeV $$\gamma^{direct} = (R_{\gamma} - 1) \times \gamma^{hadron}$$ Minimum bias unsubtracted γ_{prompt} $T_{eff}=0.211\pm0.024\pm0.044$ GeV pQCD calculations by W. Vogelsang ### Direct Photon in Au+Au at $\sqrt{s_{NN}}$ = 39 GeV NEW - ► Direct photon signal also seen in Au+Au at $\sqrt{s_{NN}} = 39$ GeV - ▶ Minimum bias unsubtracted γ_{prompt} $T_{eff} = 0.177 \pm 0.031 \pm 0.068$ GeV 10^{-3} 20-40% $242_{\pm 6 (\text{syst})}^{\pm 50 (\text{stat})} \,\text{MeV}/c$ $p_T [\text{GeV}/c]$ Au+Au $\sqrt{s_{\rm NN}} = 200 \, {\rm GeV}$ - ► Yield grows faster than N_{part} - $T_{eff} = 0.244 \pm 0.028 \pm 0.007 \text{ GeV}$ $\triangleleft p_T > 1.2 \text{GeV}/c$ $p_T > 1.4 \text{GeV}/c$ 10^{2} $N_{\rm part}$ 10^{-5} 10^{1} 10^{0} 10^{-1} 10^{-2} 10^{-3} 10^{-4} 10^{-5} 0-20% $226_{\pm 6(\text{syst})}^{\pm 28(\text{stat})} \,\text{MeV}/c$ # Direct Photon v_n in Au+Au at $\sqrt{s_{NN}} = 200 \text{ GeV}$ - ▶ Sizeable v_2 and v_3 ($\sim v_2/2$)observed at low p_T , comparable to hadron v_2 - ▶ Strong centrality dependence for v_2 , not so clear for v_3 - ▶ Unclear if $v_2 \rightarrow 0$ for $p_T \rightarrow 0$ Mark atte ## Direct Photon in Cu+Cu at $\sqrt{s_{NN}}$ =200 GeV - Analysis done using **internal conversion** method - ► Clear direct photon signal in Cu+Cu at $\sqrt{s_{NN}}$ = 200 GeV - $ightharpoonup T_{eff}$ consistent within the large uncertainty with Au+Au See poster by T. Hoshino (EM Probes: Board J08) ### Direct Photon Yield vs N_{part} ► Yield increases faster than N_{part} # T_{eff} versus $\sqrt{s_{_{NN}}}$ #### T_{eff} vs. collision energy Hint of increase of T_{eff} with $\sqrt{s_{_{NN}}}$, but also consistent with a constant fit PH*ENIX ## Inclusive Photon v₂ from new 2014 Au+Au Date - $M_{e'e'}$ [GeV/c²] Good agreement with published v_2 results - 22% of total 2014 data - ▶ Horizontal errors are uncertanity in the p_T reconstruction of e^+e^- resulting from bremsstrahlung due to increased material budget - ▶ Will provide high p_T coverage for both EMCal and Conversion photon methods #### Future Measurements: Different Systems 0.2 #### Clear signal visible in all systems These different systems will provide interesting information - ▶ Direct photon spectrum shape at low p_T in p+p - ► Are there thermal photons in p+Au, d+ Au, ³He+Au systems? - ► Cu+Au collisons to shed light on magnetic field effects if any ## Summary and Outlook #### **Summary** - Well established measurements of low p_T direct photons in Au+Au at 200 GeV - Large yield above expected contribution from pQCD - Centrality dependence of yield ~ N_{part}^{1.4} - ► Large *v*₂ with respect to reaction plane - ▶ Direct photon spectra measured in Cu+Cu collisions at $\sqrt{s_{NN}}$ =200 GeV and Au+Au collisions at 62.4 and 39 GeV - ► Consistent with the observed $\sim N_{part}^{1.4}$ dependence - ► Slight increase of *T*_{eff} with collision energy #### **Outlook** - Significantly improved v_n results expected from 2014 Au+Au data - ▶ Data from different collision geometry Cu+Au (2012) - ► Low momentum data from p+p (2015) - ► Search for direct photons in small systems: ³He+Au (2014), p+Au (2015), d+ Au (2016) # Back-Ups # Inclusive and Decay Photon v_n in Au+Au at \sqrt{s} = 200 GeV - Measure azimuthal distribution of photons relative to the reaction plane - Results using two photon identification techniques EMCal and External conversions - ▶ Model decay photon v_n based on the measured π^0 v_n - Other hadrons $(\eta, \eta', \omega) v_n$ estimated from KE_T scaling # New Conversion Photon Reconstruction Technique (2014 Au+Au data) # Identify and reconstruct photons via external conversion to e⁺e⁻ pairs - Previous method used single e⁺/e⁻ tracks (2010) - Conversions at fixed radius (Hadron Blind Detector readout plane at 60cm, ~3%) - New method used e⁺e⁻ pairs (>2011) - Conversions at any material (VTX 3^{rd} and 4^{th} layer, $\sim 10\%$) Nark atte 17